Technologie Forage – Puits HPHT

JL Bergerot – Paris La Defense – 08/02/2012
HP/HT Exploration history

A continuous deepening Exploration since XIXth century

(Source : I.H.S. 2009 Onshore Canada & US excluded)
Still “major fields” discovered below 5000 m burial

(Source: I.H.S. 2009 Onshore Canada & US excluded)
Deep Exploration history

With depth go increasing pressure and temperature TOTAL on the leading edge

From I.H.S. 2005 (excluding onshore Canada & US)
Within TOTAL, are considered HPHT, high pressure and high temperature wells with:

- an expected wellhead shut-in pressure exceeding 10000 psi (690 bar) and
- a bottomhole temperature (static or dynamic) higher than 150°C (300°F).

• National rules and regulations will apply whenever they are more stringent
 – Norway: not « and » but « or »
HP/HT current industry limits

Exploration limits are more extreme than Development limits
Current HP/HT development limits overview

Platform and onshore are more advanced than subsea
HPHT challenges

- HP/HT domains determined by technology breakthrough (Elastomer, Electronics, drilling mud, subsea development, steels ….)

- Temperature has the major impact in HP/HT environment

- Absolute pressure generally a secondary issue.

 …but relative pressure (i.e. difference between pore pressure and fracture gradient) is a key parameter…
Temperature factor

Why is temperature critical for the well architecture?

- **Temperature has a greater effect on equipment than pressure (P)**
 - T will stay while P may decline quickly
 - Elastomers and even steels suffer when T increases
 - Electronics do not survive long at very high T
 - Thermal cycling in production may cause fatigue and failures

- **In HPHT, the Joule-Thomson effect worsen the conditions**
 - Bottomhole temperature in production is higher than initial static reservoir temperature

Accurate temperature prognosis is a must in HPHT well design (maxi and all along the well path)
Production profile

Building several flowing profiles with different productivity scenario to get the more demanding conditions

XMT qualified 204°C
Packer qualified 232 °C

Modeling of flowing conditions essential to get the limits
A complex question in HTHP

Numerous parameters
- Environment conditions have to be evaluated: pH, level of stress on the steel, temperature, salinity of formation water...
- It is necessary to check that anticipated well conditions are within the special grade properties

Some testing may be required to the anticipated conditions:
- Long process => increased timing
- Fine tuning of properties => tailor made grade
- Higher cost

The metallurgy needs to be verified by Experts
Pore Pressure Prediction

- Accurate pore pressure prediction is vital for safe well planning and execution
- Error margins on prediction must be highlighted to plan for mitigation
- In HPHT, very often if not always, pressure ramp-up is very sharp, so attention must be paid to:
 - the depth of the ramp-up (time–depth conversion)
 - the slope of the ramp-up

An incorrect prediction can jeopardise well objectives
Field example of a MWW prognosis in HPHT

The Mud Weight Window is often very narrow
Actual use of the MWW during the drilling activity

<table>
<thead>
<tr>
<th>Fracture Pressure</th>
<th>Uncertainty in FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD = Equivalent Static Density</td>
<td>Supercharging 7/8 points</td>
</tr>
<tr>
<td>ECD = Equivalent Circulating Density</td>
<td>Margin to Supercharging 2 points</td>
</tr>
<tr>
<td>Safe Working zone</td>
<td>Annular Friction Gel Breaking Swab & Surge 6/7 points</td>
</tr>
<tr>
<td></td>
<td>Compressibility 1 points</td>
</tr>
<tr>
<td></td>
<td>Safety Factor 2 points</td>
</tr>
<tr>
<td></td>
<td>Uncertainty in PP</td>
</tr>
<tr>
<td>Pore Pressure</td>
<td>Total = 20 points</td>
</tr>
</tbody>
</table>

The Mud Weight Window is not available in its entirety.

JL Bergerot - Paris la Defense - Feb 2012
Supercharging/ballooning effect

- When drilling and circulating, mud ECD forces some mud into formations via fractures or fissures
 - Supercharging/ballooning

- When pumping is stopped, pressure losses disappear and fractures and fissures close and the formation give the fluid back into the hole making the well flowing
 - Breathing

Don’t mix wellbore breathing and influx or kick
When there is no mud weight window?

Differentially depleted layers
Kick - Losses

No MWW

Shale and depleted layers
Instability - losses
HPHT challenges

- Complex well architecture and reduced operational windows demand
 - Rigor
 - Good transverse cooperation
 - Comprehensive planning and preparation
 - Advanced technology

It is not and will never be a routine job,

and it becomes even more difficult when pressure decreases ….
Why drilling HPHT infill wells: the stakes

- Increase the reserves (recovery factor).
- Accelerating the delivery (drainage).
- Replace failed wells
 - Loss of casing integrity
 - Sanding problems
- Development of new HP fields
 - Phased development
Why is HPHT infill drilling challenging?

- Drilling infill wells in Highly Depleted Reservoir is a strong challenge.
 - inability to achieve reliable wells on some fields (loss of 3 wells due to liner full collapse, 1st infill stopped due to a technical difficulty)
 - serious troubles on a field depleted by 140 bars only.

- Very rapid and important depletion is usual on HP/HT fields
The compaction

Surface Subsidence

Shear

Arching

Expansion

Low σ_h zone

Sheared Casing

Reservoir Compaction

Compression

Compression

Hight τ zone

Δz
The mud weight window issue

- For initial wells, the cap rock and the reservoir are on the same pressure gradient
- \(FP > PP \)
 A mud weight window exists
Original undepleted drilling

- Cap Rock
- C Sand
- B Sand
- A Sand

- Initial State
- Pore Pressure
- Mud Operating Window
- Frac Gradient

Existing well design
Evolution with depletion

- **High pressure Cap rock:** Remains at virgin pressure
- **Low pressure reservoir:** FP decreases with PP

mud weight Window disappears
Infill drilling – ‘high’ depletion levels

Where to place this shoe?

Drill Above Frac gradient?

Additional casing strings?

Cap Rock

Time

Pore Pressure

Mud Operating Window

Frac Gradient

C Sand

B Sand

A Sand
Uncertainties

- **Geo-mechanical uncertainties**
 - Evolutions of stresses with depletion
 - Frac pressures in the reservoir (Initiation and propagation)
 - Minimum mud weight for bore hole stability in the cap rock

- **Geological uncertainties**
 - Formation tops accuracy prediction
 - Presence of gas layers in the cap rock

- **Reservoir uncertainties**
 - Absolute level of depletion
 - Pressure profile within reservoir
 - No pressure measurements after production starts
 - PLT data not always available
Technology is KEY to overcome the issues

the needs:
- An intermediate mud weight to drill in the cap rock until the top reservoir is identified
- Mechanical back-up solutions
- A low mud weight in the reservoir

the technology contribution:
- Customized drilling fluids
- Stress caging techniques
- High temperature, high collapse resistance tubulars (expandables, drilling liners)
- Gas management with Managed Pressure Drilling (MPD) techniques
The results from 3 Elgin Franklin wells

- All technologies prepared (base case and contingency) have been used and implemented successfully
 - Expandable installed and achieved positive sealing
 - Successful liner drilling, cementing and packer setting
 - Reservoir drilled with ~760 bars overbalance using “designer mud” (world record)
 - Managed Pressure Drilling techniques deployed on last 2 wells allowing an efficient gas management

- Well were completed and produced without significant formation damage
CONCLUSIONS

- HP/HT and Deep E&P have significantly increased since the last decade.
- It is and will remain a major E&P future challenge in conventional HC.
 - Malaysia, Azerbaidjan, Egypt, UK, …
- The infill well success has opened new perspectives in the HP/HT domain:
 - Insurance that wells that fail in future can be replaced, thus securing production over the life of field.
 - On a wider perspective, phased HP/HT field developments can be contemplated. This will impact HPHT field economics by allowing a reduction in pre-investments.
- TOTAL ability to operate HPHT fields is the result of close to 50 years of operations.
- Future exploration/production of deeper horizons will need new technologies in all the E&P domains:
 - Combined HPHT Deep water fields,
 - Maturing HPHT fields
 - Higher temperatures
DISCLAIMER and COPYRIGHT RESERVATION

The TOTAL GROUP is defined as TOTAL S.A. and its affiliates and shall include the party making the presentation.

Disclaimer

This presentation may include forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 with respect to the financial condition, results of operations, business, strategy and plans of TOTAL GROUP that are subject to risk factors and uncertainties caused by changes in, without limitation, technological development and innovation, supply sources, legal framework, market conditions, political or economic events.

The TOTAL GROUP does not assume any obligation to update publicly any forward-looking statement, whether as a result of new information, future events or otherwise. Further information on factors which could affect the company’s financial results is provided in documents filed by TOTAL GROUP with the French Autorité des Marchés Financiers and the US Securities and Exchange Commission.

Accordingly, no reliance may be placed on the accuracy or correctness of any such statements.

Copyright

All rights are reserved and all material in this presentation may not be reproduced without the express written permission of the TOTAL GROUP.
BACK-UP
2 different architectures

Option 1

Option 2

First option
Stress caging then
reservoir at low MW.

Contingency
Run expandable -
Penetrate reservoir
below frac P - Drilling
liner - reservoir at low
MW

Drill reservoir
with low mud
weight

JL Bergerot - Paris la Defense - Feb 2012
Stress caging: how does it work?

- Drilling in reservoir with EMW > Pfrac
- Fracture is opened
 - Fluid + solids + pressure penetration
- Fracture is plugged
 - Prevents further fracture propagation
 - Well bore is strengthened by the local increase of compression stress
- Too high overbalance means
 - Large fracture
 - Difficulty to plug frac
 - Inability to prevent frac propagation
Mechanical back up

High Collapse Expandable Liner
- Specially designed and qualified for:
 - High temperature operation
 - High collapse capability
- Elastomer instead of cemented

Drill down liner
- To enter reservoir and case off cap rock/reservoir transition
- Liner in place if any problems (losses leading to cap rock collapse)
MPD use

Operation
- Apply back pressure while drilling
- Detect a downhole gas ingress by comparing inflow & outflow
- Choke well until outflow = inflow
- Bleed down tight layers by accepting successive gas ingress by opening the choke, taking acceptable volumes choke back and circulate gas out

Principle
- Precise measurement of flow out and MW out
- Semi-closed system for safer handling of gas at surface
- ECD management through surface back pressure